HOMECONTACTSITE MAPIMPRINT
CeNS Center for NanoScience LMU Ludwig-Maximilians-Universität München
CeNS HomepageLMU Homepage

Friday, 13 January, 2017

Rock Salt Ni/Co Oxides with Unusual Nanoscale-Stabilized Composition as Water Splitting Electrocatalysts

K. Fominykh, G. C. Tok, P. Zeller, H. Hajiyani, T. Miller, M. Doblinger, R. Pentcheva, T. Bein and D. Fattakhova-Rohlfing -
Advanced Functional Materials, 10.1002/adfm.201605121 (2017)

The influence of nanoscale on the formation of metastable phases is an important aspect of nanostructuring that can lead to the discovery of unusual material compositions. Here, the synthesis, structural characterization, and electrochemical performance of Ni/Co mixed oxide nanocrystals in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is reported and the influence of nanoscaling on their composition and solubility range is investigated. Using a solvothermal synthesis in tert-butanol ultrasmall crystalline and highly dispersible Ni x Co1− x O nanoparticles with rock salt type structure are obtained. The mixed oxides feature non-equilibrium phases with unusual miscibility in the whole composition range, which is attributed to a stabilizing effect of the nanoscale combined with kinetic control of particle formation. Substitutional incorporation of Co and Ni atoms into the rock salt lattice has a remarkable effect on the formal potentials of NiO oxidation that shift continuously to lower values with increasing Co content. This can be related to a monotonic reduction of the work function of (001) and (111)-oriented surfaces with an increase in Co content, as obtained from density functional theory (DFT+U) calculations. Furthermore, the electrocatalytic performance of the Ni x Co1− x O nanoparticles in water splitting changes significantly. OER activity continuously increases with increasing Ni contents, while HER activity shows an opposite trend, increasing for higher Co contents. The high electrocatalytic activity and tunable performance of the nonequilibrium Ni x Co1− x O nanoparticles in HER and OER demonstrate great potential in the design of electrocatalysts for overall water splitting.

Opens external link in new windowArticle on journal´s webpage