HOMECONTACTSITE MAPIMPRINT
CeNS Center for NanoScience LMU Ludwig-Maximilians-Universität München
CeNS HomepageLMU Homepage
Home  >  News  >  News

Thursday, 20 October, 2022

Impact of Electric Field Disorder on Broken-Symmetry States in Ultraclean Bilayer Graphene

F. R. Geisenhof, F. Winterer, A. M. Seiler, J. Lenz, F. Zhang, R. T. Weitz

10.1021/acs.nanolett.2c02119

Bilayer graphene (BLG) has multiple internal degrees of freedom and a constant density of states down to the charge neutrality point when trigonal warping is ignored. Consequently, it is susceptible to various competing ground states. However, a coherent experimental determination of the ground state has been challenging due to the interaction-disorder interplay. Here we present an extensive transport study in a series of dually gated freestanding BLG devices and identify the layer-antiferromagnet as the ground state with a continuous strength across all devices. This strength correlates with the width of the state in the electric field. We systematically identify electric-field disorder- spatial variations in the interlayer potential difference-as the main source responsible for the observations. Our results pinpoint for the first time the importance of electric-field disorder on spontaneous symmetry breaking in BLG and solve a long-standing debate on its ground state. The electric-field disorder should be universal to all 2D materials.