

Macromolecular Systems for Nanoscience – Chemistry, Physics and Engineering Aspects

CeNS-BIMF Workshop 2007

KLOSTER IRSEE, GERMANY, SEPTEMBER 6 - 9, 2007

INVITED TALKS

Cell-Free Gene Expression on a Chip

Amnon Buxboim, Shirley Daube, and Roy Bar-Ziv

The Weizmann Institute of Science, Rehovot, Israel

We are motivated to develop artificial systems based on cellfree gene expression. We have used transcription / translation reactions to develop simple circuit cascades that mimic natural gene networks. We have also shown that protein nano-structures could be synthesized and assembled in such reactions.

A chip with immobilized genes is a natural environment to separate, cascade, and control biosynthetic reactions. A new photolithographic biochip has been developed for the immobilization and expression of genes on a surface and we present a 'structure-function' study of expression on a chip. The study shows how the physical structure of DNA under confinement affects the biochemistry of expression. This synthetic approach may be used to deepen our understanding of heterogeneous biochemical reactions taking place under confinement and crowding in living cells.

Picasso's peace dove imprinted with proteins on a chip.

[1]. V. Noireaux, R. Bar-Ziv and A. Libchaber, "Principles of cell-free genetic circuits assembly.", Proc. Natl .Acad. Sci. USA. 100 (22), 12672 (2003).

[2]. A. Buxboim, M. Bar-Dagan, V. Frydman, D. Zbaida, M. Morpurgo and R. Bar-Ziv, "A single-step photolithographic interface for cell-free gene expression and active biochips." Small 3 (3), 500 (2007).

[3]. S. Daube, T. Arad and R. Bar-Ziv, "Cell-free co-synthesis of protein nano-assemblies: tubes, rings, and doughnuts.", Nano Lett. 7 (3), 638 (2007).

[4]. A. Buxboim, S. Daube and R. Bar-Ziv, "Gene brushes: control of protein biosynthesis on the nanoscale", submitted.

Tuning Block Copolymer Morphologies with Electric Fields – From Chain Stretching to Order-Order-Transitions

Kristin Schmidt, Heiko Schoberth and Alexander Böker

Physikalische Chemie II, Universität Bayreuth, Germany

Electric field-induced orientation of block copolymer microdomains has increasingly become an important tool for generation of highly ordered templates for nanotechnological applications [1].

In this talk, we will show SAXS experiments elucidating the mechanisms and kinetics of block copolymer microdomain alignment.

Fig. 1 - Two-dimensional scattering patterns of a 50 wt.% solution of a lamellar PS-b-PI dissolved in THF for different electric field strengths. The arrow indicates the direction of the electric field vector.

In addition, we will demonstrate the distinct influence of electric fields on the microphase behavior, resulting in reversible tuning of the microdomain spacing (Figs. 1 & 2) and even order-order-transitions at sufficiently high field strengths.

Fig. 2 - Dependence of the lamellar distance d of parallel (\bullet) and perpendicular (\bigcirc) aligned lamellae with respect to the electric field vector on the electric field strength from the solution in Fig 1.

[1] A. V. Zvelindovsky: "Nanostructured Soft Matter: Experiment, Theory, Simulation and Perspectives" Springer, 199-230 (2007).

Correlation between Chain Morphology and Electronic Structure in Conjugated Polymers

Enrico Da Como¹, Klaus Becker¹, John M. Lupton² and Jochen Feldmann¹

¹Photonics and Optoelectronics Group, Department of Physics and CeNS, Ludwig-Maximilians-Universität, Munich, Germany.

²Department of Physics, University of Utah, Salt Lake City, Utah U.S.A.

In the interdisciplinary and vast field of macromolecular science, conjugated polymers are of particular interest, because of their unique electronic structure combined with the mechanical properties of plastic materials. While conjugated polymers are often cited for the semiconducting properties, they constitute equally fascinating systems for polymer physics, because of their fluorescence properties which allow performing optical spectroscopy at the single molecule level.

Among the huge number of currently available conjugated polymers, the attention will be focused on poly(dioctyl-fluorene). This phenylene based polymer represents a model system for structure properties correlations because of its phases (*glassy* and β). These differ for the degree of planarization in adjacent repeat units and show remarkably different luminescent characteristics [1]. Correlations become most apparent at the single molecule level, where the large inhomogeneous broadening of spectral lines can be overcome. By low temperature single molecule polarization anisotropy we have probed the conformation of isolated chains in the glassy and the planarized Bphase. The results demonstrate that *B-phase* chains are characterized by higher polarization values than the glassy ones, reflecting a structure comparable to a onedimensional crystal [2]. Contrary to that, the random values of the dihedral angle between the repeat units in the glassy phase lead to a decrease in the overall chain stiffness and consequently reduce the polarization anisotropy. A detailed investigation of *B-phase* chains shows a strong correlation between the zero phonon

Fig. 1. (a, b) Zero phonon line spectra of two β -phase polyfluorene single chains. (c, d) Corresponding emission polarization anisotropy curves. Insets are the proposed chromophore conformations.

linewidth and the polarization anisotropy in the emission (Fig. 1). Linewidth provides a lower limit for the electronic coherence, a parameter which is crucial for a microscopic understanding of the charge and energy transfer. Polarization anisotropy is symptomatic of the amount of bending in the chromophore. Extremely narrow lines (< 500 μ eV) are observed for straight chromophores (Fig. 1 a, c). In contrast, larger linewidths are systematically observed for weakly polarized emission (Fig. 1 b, d). The results establish a clear correlation between intrachain morphology and the photophysics. Moreover, the role of electronic coherence in determining the properties of conjugated polymers will be discussed.

[1] K. Becker, J. M. Lupton, J. Am. Chem. Soc. (Comm.) 127, 7306 (2005).

[2] E. Da Como, K. Becker, J. Feldmann, and J. M. Lupton, Nano Lett. (in press) (2007).

Micromechanics of Ultrathin Polymeric Membranes - From Capsules to Wrinkles

Andreas Fery

University of Bayreuth, Bayreuth, Germany

Mechanical properties of ultrathin polymeric films are of interest not only for stability aspects, but as well for transport properties of nano-objects in flow, adhesion properties or for the design of mechanical switches and valves, to mention just a few examples. Studying these properties requires new experimental approaches. We give two examples of nanomechanical studies on polymeric membranes. In the first case, we report results on measurements for microcapsules fabricated by layer-by-layer deposition of polyelectrolytes and discuss implications for the development of stimuli sensitive microcapsule systems. In the second part, we turn to solid supported membranes and highlight recent developments for controlled wrinkling of these systems. We show that wrinkling can not only be efficiently used to measure elastic moduli, but that it can as well serve as a low-cost alternative to lithographic techniques for producing topographically structured samples.

Slow Transport in Complex Environments

Thomas Franosch, Erwin Frey, and Felix Höfling

Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physic, Ludwig-Maximilians-Universität München, Theresienstraße 37, 80333 München, Germany

Spatial heterogeneities often give rise to intriguing slow dynamics in complex materials. Examples constitute colloidal gels with stress-sustaining networks, or the crowded environment of the cytoplasm. A minimal model that encompasses spatial disorder and slow dynamics is provided by the Lorentz model, where a classical point particle explores space in the presence of of a frozen array of randomly distributed hard spherical obstacles.

We present extensive molecular dynamics simulations and show that a dynamic scaling hypothesis explains the anomalous relaxation close to the localization threshold [1]. The large crossover regimes are reminiscent to the density-dependent exponents of anomalous transport due to 'molecular crowding' observed in the cell and we suggest that such a behavior is in deed generic.

Furthermore we discuss the long-time tails of the velocity autocorrelation function [2] which have been predicted almost forty years ago, but have eluded computer simulations so far.

The model is extended to a needle in the presence of obstacles in the plane to study the effects of entanglement versus excluded volume. The orientational motion is shown to be consistently described in terms of a tube model in the spirit of Doi and Edwards. In particular, we corroborate the scaling behavior of the orientational diffusion as the entanglement due to the obstacle density increases.

[1] F. Höfling, T. Franosch, and E. Frey, Phys. Rev. Lett. 96, 165901 (2006).

[2] F. Höfling and T. Franosch, Phys. Rev. Lett. 98, 140601 (2007).

DNA as a Tool for Nanoscience

Deborah K. Fygenson

Department of Physics, University of California, Santa Barbara, CA 93106, USA

With over half a century of intense research into its physical properties and biological functions, DNA has become a remarkably useful material: easy to design, obtain, handle, characterize and even observe at the single molecular level. In this talk I will present a survey of ways in which our group is working with DNA to build devices and probe biological and physical phenomena at the nanoscale. These fall into three general categories: using DNA as a scaffold for assembly of other molecules or functional units; building DNA-based devices to characterize DNA-binding proteins; studying DNA self-assembly in its own right.

Synthesis and Application of Vertically Oriented, Highly Ordered Arrays of TiO₂ Nanotubes

Craig A. Grimes

Department of Electrical Engineering, Dept. of Materials Science and Engineering The Pennsylvania State University, University Park, PA USA 16802

Highly ordered, vertically oriented TiO₂ nanotube-arrays fabricated by potentiostatic anodization of titanium constitute a material architecture that offers a large internal surface area without a concomitant decrease in geometric and structural order. The precisely oriented nature of the crystalline (after annealing) nanotube arrays makes them excellent electron percolation pathways for vectorial charge transfer between interfaces. In a variety of applications including hydrogen gas sensing, water photoelectrolysis, and in heterojunction solar cells the material architecture has demonstrated remarkable properties worthy of careful consideration. For example, in response to 1000 ppm hydrogen at room temperature the TiO₂ nanotube arrays demonstrate a change in electrical resistance of 8.7 orders of magnitude, that is 50,000,000,000%, the largest known sensitivity of any material, to any gas, at any temperature. Under UV spectrum illumination (320 nm - 400 nm) nanotube arrays \approx 30 µm long demonstrate an un-optimized light-to-chemical energy

Fig. 1 - Transparent TiO₂ nanotube array based double heterojunction device configuration. Not shown, difficult to draw, is that the polymer percolates in between the nanotubes as well.

photoconversion efficiency of 16.25% [1]. As will be discussed, the anodization chemistry has recently been extended to mixed metal systems, enabling fabrication of n-type Fe-Ti-O and p-type Cu-Ti-O nanotube arrays that strongly absorb in the visible spectrum.

As shown in Fig. 1, transparent nanotube array films have recently been used in the fabrication of double heterojunction solid state solar cells [2], with a blend of regioregular poly(3-hexylthiophene) and a methanofullerene (Phenyl C₇₁-butyic acid methyl ester) infiltrated into the transparent nanotube array films. In addition to the P3HT-PCBM interfaces, the walls of the TiO_2 nanotubes provide an additional heterojunction for charge separation. The resulting solid state solar cells show an AM 1.5 short-circuit current density of 12.4 mA/cm², 641 mV open circuit potential and a 0.51 fill factor yielding a power conversion efficiency of 4.1%.

Herein we consider fabrication of the nanotube array architecture, as well as several applications including hydrogen gas sensing, solar generation of hydrogen by water photoelectrolysis, use in solid state heterojunction solar cells, biofiltration, and in enhancing blood clotting to help control hemorrage.

[1] C. A. Grimes, J. Materials Chemistry 17, 1451 (2007).

[2] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes. In press, Nature Nanotech.

Controlling Complex Fluids in Microsystems

Stephan Herminghaus

Max-Planck Institute for dynamics and self-organization, Bunsenstr. 10, 37073 Göttingen

Not only the general trend of miniaturizing technical devices, but also the everyday needs of biotechnology and the urge to understand the complex physics of biosystems have driven the development of microdevices for complex matter systems. This talk will present recent achievements in controlling liquids in open and closed microfluidic structures. It will be shown how liquid can be transported in open channels by means of electrowetting. It will be demonstrated that the internal structure of complex fluids may be harnessed by providing suitable prestructures, and how one may exploit these effects to set up combinatorial chemistry labs for picoliter reactant volumes. It will finally be speculated how these systems may be used to design molecular electronic circuitry in a self-assembled way.

Revealing the Interplay of Forces: Dewettig Fluids, Adsorbing Proteins and Sticking Geckos

Karin Jacobs

Universität des Saarlandes / FR 7.2 Experimentalphysik, 66041 Saarbrücken

Intermolecular forces embrace all forms of matter and are also present in our every-day live as they e.g. determine the strength of a glue or the wetting properties of water on textiles. In my talk I will describe our way to access these forces by studying thin liquid films in the nanometer range [1]. The lessons learned can then be applied to more complex situations like the adsorption of proteins to surfaces like dental implant materials or the adhesion of geckos [2].

R. Seemann, S. Herminghaus, and K. Jacobs, Phys. Rev. Lett. 86, 5534 (2001).
G. Huber, H. Mantz, R. Spolenak, K. Mecke, K. Jacobs, S. N. Gorb, and E. Arzt., Proc. Nat. Acad. Sci. 102, 16293 (2005).

Can an Optical Sensor for TNT Related Explosives be Made?

Jan O. Jeppesen¹, Kent A. Nielsen¹, Lise G. Jensen¹, Andrew D. Bond¹, Won Seob Cho², Vincent M. Lynch², and Jonathan L. Sessler²

¹ Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK 5230 Odense <u>M</u>, Denmark

² Department of Chemistry, The University of Texas at Austin, 1 University Station-A5300, Texas 78712 0165, USA

The advent of supramolecular chemistry [1] has stimulated the contemporary chemists' interest in the development of chemosensors capable of recognizing [2] specific chemical species through weak, noncovalent interactions. The macrocycles, calix[4]pyrroles [3] – first synthesized in the nineteenth century by Baeyer – are endowed with four pyrrole NH hydrogen bond functionalities and have recently received extensively attention as receptors for anionic and neutral substrates. The incorporation of redox-active components into chemosensors is one means of enhancing the recognition process via, e.g., increased donor-acceptor interactions. In this context, the use of tetrathiafulvalene [4] (TTF) appears particularly attractive and a calix[4]pyrrole incorporating four appended TTF units has recently been synthesized [5,6]. It will be demonstrated, that this tetra(TTF)-calix[4]pyrrole is an excellent chemosensor capable of detecting explosives – such as trinitrotoluene (TNT) – commonly used in landmines through a simple color change from yellow to green (see figure below).

[1] J.-M. Lehn, Supramolecular Chemistry, VCH, Weinheim, Germany, 1995.

[2] (a) P. D. Beer and P. A. Gale, Angew. Chem. Int. Ed. 40, 486 (2001). (b) K. A. Nielsen, J. O. Jeppesen, E. Levillain, and J. Becher, Angew. Chem. Int. Ed. 42, 187 (2003).

[3] J. L. Sessler and P. A. Gale in The Porphyrin Handbook, Vol. 6 (Eds.: K. M. Kadish, K. M. Smith, R. Guilard), Academic Press, San Diego, 2000, p. 257.

[4] (a) J. L. Segura and N. Martín, Angew. Chem. Int. Ed. 40, 1372 (2001). (b) J. O. Jeppesen and J. Becher, Eur. J. Org. Chem., 3245 (2003).

[5] K. A. Nielsen, W.-S. Cho, J. O. Jeppesen, V. M. Lynch, J. Becher, and J. L. Sessler, J. Am. Chem. Soc. 126, 16296 (2004).

[6] K. A. Nielsen, W.-S. Cho, J. Lyskawa, E. Levillain, V. M. Lynch, J. L. Sessler, and J. O. Jeppesen, J. Am. Chem. Soc. 128, 2444 (2006).

Complementary Coordination of Porphyrin as Scaffold for Biomimetic and Optics Materials

Yoshiaki Kobuke¹ Akiharu Satake², and Kazuya Ogawa²

¹Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan ²Graduate School of Materials Science, Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara 630-0192, JAPAN

Imidazolyl-Zn-porphyrin spontaneously dimerizes by complementary coordination with a large stability constant of 10^{11} M⁻¹. The slipped π -stacked dimer structure represents the photosynthetic special pair not only in its close similarity of the structure but also in its photophysical properties. Photoinduced electron transfer produces cation radical delocalized over two porphyrin π -orbitals. Due to the decreased solvent reorganization energy, the charge separation rate is accelerated, while the charge recombination rate is decelerated to promote high charge separation efficiency.

Coupling of two imidazolyl-Zn-porphyrin's at their meso positions leads to one dimensional porphyrin wire of extremely large molecular weights by successive complementary coordination. The excitation energy is not quenched by the wire formation itself and is transferred efficiently through the slipped cofacial dimer by energy hopping even

Fig. 1 - AFM image of molecular wire connection of Au nano particles.

Fig. 2 - Macrocyclization of bisporphyrin bridged by bis(ethynyl)fluorene and its construction unit (inset).

through 50 nm separation to the acceptor attached at the molecular terminals, representing a linear antenna function. Butadiynylene-connected bis(imidazolyl-Zn-porphyrin) was prepared as a molecular wire. This porphyrin array connected gold nanoparticles through complementary coordination to another imidazolyl-Zn-porphyrin attached on the particle via marcaptide modification. The AFM image was shown in Fig. 1.

Connection of two imidazolyl-Zn-porphyrin's by a bent structural unit such as *m*-phenylene leads exclusively macrocyclic structures under dilute conditions. These macrorings are of barrel form. When *m*-bis(ethynyl)phenylene is chosen as the bridging unit, the resulting macrocycle can adopt planar configuration on Au or Cu substrate and clear STM images were obtained. Macrocycles composed of complementarily coordinated dimer unit is an excellent expression of light harvesting antenna complex of purple bacteria. Excitation energy is transferred with 5-20 ps time constants depending on the mutual separation distances by energy hopping process within the ring. The most stable macrocyclic hexamer is accompanied by smaller pentameric macrocycles, since the entropy driven macrocyclization favors the formation of smaller rings. This tendency becomes more evident when the angle is enlarged from 120°. Therefore, diethynylfluorene-bridged bis(imidazolyl-Zn-porphyrin), angle being 160°, gave a maximum distribution at 14- and 15-membered porphyrin macrocycles (Fig. 2) rather than the 18 membered ring of the least angle strain. These large macrocyles are interesting in view of obtaining large two photon absorbing cross sections.

A. Satake and Y. Kobuke, Tetrahedron, 61, 13 (2005).
K. Ogawa and Y. Kobuke, J. Photochem. Photobiol. C, 7, 1 (2006)

Design of Polymer-Coated Nanoparticles for Positioning in Block Copolymers

Edward J. Kramer

University of California, Santa Barbara

End-functional polymers grafted to form brushes on inorganic nanoparticles can be designed to provide useful fundamental test systems for block copolymer/nanoparticle self-assembly. Short thiol terminated polystyrene (PS-SH), poly(2-vinylpyridine) (P2VP-SH) and PS-r -P2VP-SH (M ~ 3 kg/mol) were synthesized to allow Au nanoparticles (~ 1.5 nm radius Au core) coated with polymer brushes to be prepared. The polymer brush coating enabled these nanoparticles to be incorporated at low volume fractions into PS-b-P2VP diblock copolymers with precise control over nanoparticle location, namely wholly within the PS or P2VP domains or segregated either strongly or weakly to the PS-b-P2VP interface. Such control is achieved with three different types of brushes on the Au nanoparticles: a.) High areal chain density (> 1.5 chains/nm²) mixed brushes of PS-SH and P2VP-SH with fractions fPS-SH of PS-SH ranging from 0 to 1; b.) High areal chain density brushes of PS_x -r -P2VP_(1-x)-SH random copolymer with different x values; c.) Variable areal chain density brushes of PS-SH. For mixed brushes we find that the nanoparticles are segregated to the interface over a wide range (0.90 to 0.10) in f_{PS-SH} while for the $PS_{x}-r$ -P2VP_(1-x)-SH random copolymer brushes x must be close to 0.5 before these segregate to the block copolymer interface. These results strongly suggest that the PS-SH and P2VP-SH ligands are mobile on the nanoparticle surface and phase separate in the 2D brush to form "Janus" particles that bind more strongly to the interface than those coated with random copolymer brushes. For the variable areal chain density brushes of PS-SH we find that at areal chain density above a certain value that increases with decreasing molecular weight M of the brush, the nanoparticles are segregated to the center of the PS domains while below this value they are segregated to the interface. The preferential interaction between the P2VP block of the PS-b-P2VP and the imperfectly shielded Au surface is responsible for the segregation of the nanoparticles with a low areal chain density brush to the interface. The transition areal chain density is ~ $4/R_g^2$ for M ~ 3 kg/mol PS-SH where R_g is the radius of gyration of chains of M = 3.4 kg/mol but unexpectedly scales as M^{-0.55} when M is varied. Along with suggesting an explanation for this scaling law, I will discuss the changes in block copolymer morphology that occur as the nanoparticle volume fraction φ is increased for nanoparticles that segregate to the domain center as well as those that segregate to the interface, the latter behaving as nanoparticle surfactants.

Wormlike and Glassy Wormlike Chains

Klaus Kroy

ITP, Leipzig University, Postfach , Leipzig, Germany

The wormlike chain is the standard model of a semiflexible thread-like macromolecule. As such it is the basis for our mathematical understanding of the universal mechanical and dynamical properties of

important biopolymers such as DNA, F-actin, microtubules, and their solutions and networks. In its scaling limit, known as the *weakly-bending rod*, it admits static and dynamic scaling solutions much like the more familiar Gaussian flexible polymer models.

After a general introduction, the lecture will highlight two recent theoretical developments: the first motivated by - and concerned with - the nonlinear non-equilibrium dynamics of single DNA molecules subject to strong external fields [1]; the second, called the glassy wormlike chain [2], accounts for the notoriously complicated intermolecular interactions in a semi-dilute solution of (sticky) polymers, such as the cytoskeleton, on a semi-phenomenological level. (As an example for an application, Fig. 1 displays the dynamic structure factor of actin solutions, fitted by the model [3].) Important implications, such as "rheologigcal reduncancy" and a generalized time-temperature superposition principle, for the soft glassy rheology of cells and polymer solutions and networks are outlined.

Fig. 1 Dynamic structure factor for pure F-actin solutions at $T = 15^{\circ}C$ for various scattering vectors q and the predictions of the GWLC (red lines) [3]. Inset: By exploiting the superposition principle, data for different concentrations can be combined into a master curve extending over up to 10 orders of magnitude in time.

[1] O. Hallatschek, E. Frey, K. Kroy Phys. Rev. Lett. 94, 077804 (2005).

[2] K. Kroy, J. Glaser, New Journal of Physics, special issue about the cytoskeleton, to appear.

[3] C. Semmrich, J. Glaser, T. Storz, R. Merkel, K. Kroy, A. Bausch, under review at the Proc. Nat. Acad. Sci.

Surface-Confined Self-Assembly

Mario Ruben

Institute of Nanotechnology, PF 3640, D-76021 Karlsruhe, Germany, e-mail: Mario.Ruben@int.fzk.de; www.ruben-group.de

Molecular nanostructures have recently attracted interest in view of their potential to host tuneable functionalities (e.g. electronic, magnetic, optic etc.), which might be accessible within the few nanometre regime. On the controlled generation of molecular nanostructures on surfaces by coordinative bond formation using open spin metal ions and appropriated organic ligands will be reported. The obtained molecular networks will be investigated at the single-molecule level by means of UHV-STM-techniques carried out at low temperatures.

A combined self-assembly/deposition approach yields a new protocol for the generation of modular metalion arrays on surfaces and advents features of a novel, "surface-assisted" coordination chemistry involving magnetically active molecular bricks. Alternatively, the deposition of conventionally synthesized magnetic molecules onto electrically conducting, metallic surfaces will be shown. From this starting point, first experiments directed towards the addressing magnetism at the "single molecule" or "single ion" level will be discussed. The controlled design of operable magnetic surfaces by the principles of surface-assisted coordination chemistry will be a fascinating combination of new scientific perspectives with the aesthetic beauty of the real time observation of the altered interfaces.

- [1] M. Ruben, Angew. Chem. Int. Ed. 44, 1594 (2005).
- [3] M. Ruben et.al., Angew. Chem. Int. Ed. 44, 7896 (2005).
- [2] N. Lin, et.al., Dalton Trans. 267-280 (2006).

[3] M. Ruben et. al., J. Am Chem. Soc. 128, 15644 (2006).

[4] S. Stepanow et. al.,, Angew. Chem. Int. Ed. 46, 710 (2007).

Tailor-Made Surfaces for Microsystems and Nanotechnology

Jürgen Rühe

University of Freiburg – IMTEK, Department of Microsystems Engineering, Georges-Köhler-Allee 103, D-79110 Freiburg, Germany

As devices are getting smaller and smaller and are now approaching even molecular dimensions the influence of the surfaces on the overall performance of a system is becoming more and more important if not dominant. On the other hand, only in a few cases materials can be found that fulfill the requirements needed for the construction of a device and that also provide the necessary surface properties and coatings are needed to optimize the surface properties (Figure 1).

In this contribution we report on chemical strategies that are based on surface-attached polymer layers that allow for the tailoring of surface properties and that also exhibit outstanding stability even in adverse chemical environments. A number of synthetic strategies for the preparation of such layers will be discussed in terms of the specific features and film thicknesses of the resulting layers as well as on ways how to generate microstructures or how to deposit such layers on surfaces within a device that are not well accessible for standard techniques of layer preparation.

Furthermore, systems will be reported in which stimulus responsive polymer carpets are used for the manipulation and movement of nanoparticles on surfaces. Finally, we will also show how the integration of nanometer scale coatings with nanometer rough surfaces leads to interesting wetting properties.

Fig. 1 Materials interact with their environment through surfaces. Thin polymeric coatings can be used to control these interactions.

Nondisruptive Block Copolymer-Based Nanolithographic Processes

T. P. Russell

Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA 01003

As the size scale of features continue to shrink in devices, the use of self-assembly, i.e. a "bottom up" approach, for device fabrication becomes increasingly important. Yet, simple self-assembly alone will not be sufficient to meet the increasing demands place on the registry of structures, particularly nanostructured materials. Several criteria are key in the rapid advancement and technology transfer for self-assembling systems. Specifically, the assembly processes must be compatible with current "top down" approaches, where standard photolithographic processes are used for device fabrication. Secondly, simple routes must be available to induce long-range order, in either two or three dimensions, in a rapid, robust and reliable manner. Thirdly, the in-plane orientation and, therefore, ordering of the structures, must be

susceptible to a biasing by an external, macroscopic means in at least one, if not two directions, so that individual elements can be accessed in a reliable manner. Block copolymers, specifically block copolymers having a cylindrical microdomain morphology, are one such material that satisfy many, if not all, of the criteria that will be necessary for device fabrication. Here, we discuss several routes by which these versatile materials can be used to produce arrays of nanoscopic elements that have high aspect ratios (ideal for templating and scaffolding), that exhibit long-range order, that give access to multiple length scale structuring, and that are amenable to being biased by macroscopic features placed on a surface.

Block Copolymer Blends for Holographic Data Storage

Klaus Kreger¹, Daniela Kropp¹, Hubert Audorff², Michael Häckel², Lothar Kador^{2, 3}, <u>Hans-Werner Schmidt^{1, 3}</u>

¹ Macromolecular chemistry I, University of Bayreuth, 95440 Bayreuth, Germany

² Institute of Physics, University of Bayreuth, 95440 Bayreuth, Germany

³ Bayreuther Institut für Makromolekülforschung (BIMF), University of Bayreuth, 95440 Bayreuth, Germany

Holographic data storage is the most promising technology in the field of optical data storage. In contrast to conventional CDs or DVDs the entire volume of the medium is utilized instead of a single layer. Thus a data storage capacity of several terabytes on a CD-sized disk is proposed. Write-once media, which are mainly based on photopolymer systems, seem to be fairly advanced [1]. Azobenzene-based polymer systems represent a class of a rewriteable media. This presentation reflects the development from basic material considerations of azobenzene-based polymer systems to the processing of the storage media and the photophysical processes to create and store a huge amount of holographic gratings on the same spot by angular multiplexing (AM).

Fig. 1 - a) Picture of an injection-molded polystyrene-based block copolymer blend sample with a diameter of 25 mm and a thickness of 1.1 mm. b) Sample with several inscribed holograms between crossed polarizers. c) Sample showing the first diffraction order of some of these holograms under illumination with white light

Azobenzene-based polymers undergo a photoinduced orientation via multiple trans-cis-trans cycles during illumination by polarized light. Homopolymers or copolymers additionally tend to form surface relief gratings (SRGs), which are detrimental for holographic volume gratings. Such SRGs can be efficiently suppressed by utilizing block copolymers, where mass transport through a rigid matrix is precluded, but the confinement is maintained. This confinement of the azobenzene moieties is essential for the stabilization of the holographic gratings. In polymers based on amorphous azo-moieties, this stabilization is mainly dominated by the Tg of the photoaddressable segment [2]. For AM, thick films in the millimeter range are required, while the optical density (OD) at the writing wavelength has to be in the range of 0.7. By blending such block copolymers with a majority-based, non-absorbing homopolymer dilution of the chromophore minority segment can be achieved. The spheres are randomly distributed, but the sphere size is maintained [3] as well as the photophysical behavior. Samples of 1.1 mm thickness with an adjusted OD can be prepared by injection molding (Fig. 1). Superimposing of several 100 holographic gratings at the same spot was demonstrated as well as 1000 writing and erasing cycles [4]. The long term stability of the stored information exceeds more than two years at ambient temperature [5].

This work was supported by the German Science Foundation in the framework of SFB 481 (projects B2 and Z4).

[1] L. Hesselink, S. S. Orlov and M. C. Bashaw, Proc. IEEE, 92, 1231 (2004).

[2] K. Kreger, C. Löffler, R. Walker, N. Wirth, D. Bingemann, H. Audorff, E. A. Rössler, L. Kador and

H.-W. Schmidt, Macromol Chem. Phys. 208, 1530 (2007).

[3] T. Breiner, K. Kreger, R. Hagen, M. Häckel, L. Kador, A. H. E. Müller, E. J. Kramer and H.-W. Schmidt, Macromolecules 40, 2100 (2007).

[4] M. Haeckel, L. Kador, D. Kropp and H.-W. Schmidt, Adv. Mater. 19, 227 (2007).

[5] M. Haeckel, L. Kador, D. Kropp, C. Frenz and H.-W. Schmidt, Adv. Funct. Mater. 15, 1722 (2005).

Nanostructures for Photovoltaics

Lukas Schmidt-Mende

Dept. Materials Science, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ, UK

Examples for nanostructures for photovoltaics are mesoporous TiO_2 films in dye-sensitized solar cells. In this presentation recent developments in solid-state dye-sensitized solar cells will be discussed, including investigations of the interfacial engineering on the TiO_2 /dye/hole-transporter interface and the influence of the chemical structure of the dye on the solar cell performance.

Furthermore different metal oxide nanostructures will be presented and their possible applications discussed. We propose the use of these structures as electrode materials in hybrid solar cells. Their possible advantages over conventional mesoporous layers will be discussed. Another application of nanostructures for biological and chemical sensors will be briefly presented.

DNA-Switchable Supramolecular Structures

Fritz Simmel

Department of Physics and Center for Nanoscience, LMU Munich, Geschwister-Scholl-Platz 1, 80539 Munich, Germany

Supramolecular structures composed of DNA can be switched between different conformations or states by the addition or removal of nucleic acid effector strands. Three different examples for such switchable systems will be discussed: i) switchable DNA aptamers which can controllably bind or release proteins; ii) DNA-crosslinked gels which can be used to reversibly trap and release nanoparticles; and iii) DNA nanomechanical devices which are driven by RNA effector molecules.

Multifunctional Donor-Acceptor Block Copolymers for Solar Cell Applications

M. Sommer, S. M. Lindner and M. Thelakkat

Applied Functional Polymers and Laboratory for Solar Energy Research, University of Bayreuth, Bayreuth, Germany

The field of organic and polymer technology for electronics, solar cells etc are gaining more and more importance due to the inherent advantages of cheap production processes and non-conventional design of device structures. The complete control of versatile functions such as light absorption, exciton diffusion, charge separation, charge transport and charge collection at the respective electrodes in an organic solar cell can be achieved by designing multifunctional block copolymers which build up nanostructured bulk heterojunction between donor and acceptor segments via self-assembly. This concept is here presented with suitable examples in which the importance of control of molecular structure up to control of self-assembly and control of device functions are demonstrated. In certain examples the importance of achieving the domain size suitable to the exciton diffusion length will be shown to give efficient photovoltaic devices.

List of poster presentations (short introductions on Friday, 15:15, each 3 min)

1. Abraham, Frank

Self-Assembled Nanostructures as Nucleating Agents for Polyvinylidene Fluoride

2. Bernet, Andreas

Amphiphilic Low-Molecular-Weight Organogelators and Their Application in Dye-Sensitized Solar Cells

3. Friedrichs, Eike

Control of Genetic Expression on the Transcriptional Level

4. Heinz, Paul & Mögele, Florian

Nanopatterned Surfaces by Molecular Self Assembly - a STM Study

5. Hildner, Richard

Revealing the Electron-Phonon Coupling in a Ladder-Type p-Conjugated Polymer by Single-Molecule Spectroscopy

6. Hofmann, Christiane

Energy and Electron Transfer in Organic Donor-Acceptor Dyads Containing Perylenebisimide Studied by Time-Resolved Spectroscopy

7. Hrelescu, Calin

Optothermal DNA-Melting in Gold Nanoparticles Aggregates

8. Huth, Martin

Towards a Biological Sensor

9. Kolb, Tristan

All-dry Negative Tone Photoresists based on Coumarin Derivatives

10. Kuhr, Jan-Timm

Transfection Statistics from EGFP-Fluorescence Data

11. Lohwasser, Ruth

Morphological Control in Organic Electronic Devices via Block Copolymer Self-Assembly

12. Mayilo, Sergiy

Nanocrystal-Encoded Microbeads for Diagnostics of Autoimmune Diseases

13. O'Neill, Patrick

Sequence-dependent Fluorescence of DNA-hosted Ag Nanoclusters

14. Salis-Soglio, Cosima von

Electret Additives for Isotactic Polypropylene

15. Scheler, Esther

Fluorene Based Reactive Mesogens for Photopatterning

16. Schlüsche, Peter

The mechanism of Gene Regulation Revealed by SpFRET

17. Schneider, Christian

Coagulation Kinetics of Spherical Polyelectrolyte Brushes in Presence of Multivalent Counterions

18. Schöffel, Markus

Imaging SNARE Mediated Membrane Fusion Events with Single Vesicle Resolution

19. Schwaderer, Peter Pulling on Siloxane Molecules

20. Shankar, Karthik

Hydrogen Production by the Photo-cleavage of Water using TiO2 Nanotube Arrays

21. Sobey, Tom

From DNA-based Nanotubes to DNA-wrapped Carbon Nanotubes

22. Walther, Andreas

Compartmentalized Cylindrical Nanoparticles – Preparation, Solution Properties and Side-Specific Decoration with Inorganic Nanoparticles

23. Yurtsever, Ayhan

Frequency Modulation Torsional Resonance Mode AFM (FM-TR-AFM) for the In-plane Surface Properties Measurement

POSTER ABSTRACTS

Self-Assembled Nanostructures as Nucleating Agents for Polyvinylidene Fluoride

Frank Abraham¹ and Hans-Werner Schmidt^{1, 2, 3}

¹ Makromolekulare Chemie I, Universität Bayreuth, D-95440 Bayreuth

² Bayreuther Institut für Makromolekülforschung (BIMF), Universität Bayreuth, D-95440 Bayreuth

³ Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universität Bayreuth, D-95440 Bayreuth

We present the investigation of substituted 1,3,5-benzenetrisamides as nucleating agents for PVDF. Selected derivatives of this class of compounds are known to be very efficient nucleating agents and clarifiers for isotactic polypropylene [1]. Among in the literature reported nucleating agents for PVDF are PTFE particles and flavanthrone, which is of yellow color [2].

In order to screen potential candidates diffusion experiments were carried out. In the right figure sections of polarized optical micrographs at different times during the isothermal crystallization at 138°C are shown. The samples were prepared by placing tiny amounts of additive whiskers in the middle of a thin (~100 m) compression molded PVDF film on a microscope slide. This sample was covered, held at 280°C for 10 minutes and cooled to 138°C.

The sections show:

A: nucleating agent (left) in the polymer melt;

- B: self-assembly of additives;
- C: PVDF crystallization on the additive surface;
- D: PVDF crystallization in the area without additive;
- E: the finally crystallized sample.

Promising compounds have been selected and investigated in mixtures with PVDF to study the concentration dependence nucleating properties.

The diagram on the right shows the crystallization temperature (!) of PVDF mixtures comprising amounts between 1 wt% and 70 ppm of compound 1. Temperatures for crystallization were determined at the minimum of second cooling (10 K/min) after 5 min isothermal heating at 250°C. The crystallization temperatures of the mixtures comprising compound 1 is increased about 10 °C for 1 wt% and still 8 °C for 570 ppm. At lower concentrations no nucleation of PVDF is observed.

[1] M. Blomenhofer, S. Ganzleben, D. Hanft, H.-W. Schmidt, M. Kristiansen, P. Smith, K. Stoll, D. Mader and K. Hoffmann, Macromolecules 2005, 38, 3688.

[2] S. Schneider, X. Drujon, B. Lotz and J. C. Wittmann, Polymer 2001, 42, 8787.

Amphiphilic Low-Molecular-Weight Organogelators and Their Application in Dye-Sensitized Solar Cells

Nils Mohmeyer¹, <u>Andreas Bernet</u>¹, Kuang Daibin², Shaik M. Zakeeruddin², Michael Grätzel², and Hans-Werner Schmidt¹

¹ Macromolecular Chemistry I, University of Bayreuth, 95440 Bayreuth, Germany ² Laboratory for Photonics and Interfaces, Institute of Molecular and Biological Chemistry, Swiss Federal

Institute of Technology, 1015 Lausanne, Switzerland

Low-molecular-weight organogelators are organic molecules capable of growing from homogeneous solution into fine fibrillar structures within an organic solvent. The resulting three-dimensional network yields a macroscopic gel. This self-assembly process is driven by specific non-covalent intermolecular interactions, and the formed physical gels are therefore thermoreversible. Intensive effort has been expended to understand the structure-property relations in order to tailor organogelators; however, up to now it has not been possible to predict in advance if a new molecule will gel an organic solvent or not. Therefore, in recent years, many researchers have attempted to find new efficient gelators, resulting a variety of classes of small molecules with gelling potential.

Conceptionally, our amphiphilic low-molecular-weight gelators consist of an apolar cyclohexyl head group, a hydrogen-bond-forming segment based on p-phenylenediamines with amide and urea groups, and an alkyl chain [1]. The gelation behavior of these asymmetrically substituted p-phenylendiamides depends on a well-balanced relation of the terminal head group, the units involved in hydrogen bonding, and on the length of the alkyl chain. With this class of gelators it is possible to tailor thermal and mechanical properties in different organic solvents for various utilizations [2]. This new class of low-molecular-weight amphiphilic compounds is able to gel organic solvents over a broad range of polarity. Especially polar solvents such as valeronitrile, γ -butyrolactone and ionic liquids can be gelled even at concentrations far below 1 wt%.

A promising application is the gelation of ionic liquids in dye-sensitized solar cells (DSCs) (See Fig. 1). DSCs with ionic liquids face the problem of long-term stability due to corrosion and leakage. Simple increase of the viscosity of the ionic liquid leads to reduced performance. Organogelators offer the possibility to yield a quasi-solid state DSC with enhanced long-term stability and maintained performance. We were able to use one of our gelators to prepare a DSC with high efficency (6.3 % at full sunlight irradiation) and long-term stability (light soaking accelerating stress test at 60 °C over 1000 h) without loss of performance [3].

Fig. 1 - Schematic representation of a quasi-solid-state DSC.

[1] N. Mohmeyer and H,-W. Schmidt, Chem. Eur. J. 11, 863 (2005).

[2] N. Mohmeyer and H.-W. Schmidt, Chemistry--A European Journal 13(16), 4499 (2007).

[3] N. Mohmeyer, D. Kuang, H.-W. Schmidt, S. M. Zakeeruddin and M. Grätzel, J. Mat. Chem. 16, 2978 (2006).

Control of Genetic Expression on the Transcriptional Level

Eike Friedrichs and Friedrich Simmel

Department of Physics, LMU, Geschwister-Scholl-Pl. 1, 80539 München, Germany

Genetic expression comprises the process of turning genetic information - as it is stored in DNA - into

enetic information - as it is stored in DNA - into biologically functionable proteins. Regulation of expression occurs at any stage of this process. Yet, regulating expression in synthetic systems even at the most basic level, the level of transcription - remains a challenge. We aim to control the synthesis of mRNA by interference of the transcriptional process by functional DNA or RNA sequences that, for instance, have the capability of binding to and thereby inhibiting polymerases or shield promoter sequences of genes. We demonstrate how control of the enzymatic activity of Taq polymerase is gained by switching a DNA aptamer from an enzyme binding and inhibiting conformation to a noninhibiting duplex conformation and vice versa [1].

We thank the Deutsche Forschungsgemeinschaft (Emmy Noether grant SI 761/2-3), Nanosystems Initiative Munich (NIM) and the Human Frontier Science Program (HFSP) for their financial support.

[1] E. Friedrichs, F.C. Simmel, ChemBioChem, submitted

Nanopatterned Surfaces by Molecular Self Assembly - a STM Study

Florian Mögele¹, Paul Heinz^{1,2}, and Bernhard Rieger²

¹ Institute of Material Science & Catalysis, University of Ulm, Albert-Einstein-Allee 11, Ulm, Germany ² WACKER-Chair of Macromolecular Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching, Germany

In the last decades top down engineering via lithographic methods led to high performance functional devices. But it is predicted that the now used common methods will reach their limits at structures below 20 nm. Contrary self assembly is a powerful method to obtain even smaller defined functional structures and has found use in miscellaneous fields such as chemical sensors [1], biotechnology [2], or catalysis and electrochemistry [3]. Self assembled monolayers of metal organic compounds - especially imine bridged complexes - are very interesting because of their catalytical - and in the case of compounds bearing two or more metals - of their paramagnetic properties.

Here we describe the synthesis of a self organizing ligand systems based on 2,4dihyroxybenzaldehyde [4] and 2,4dihydroxyacetophenon as well as the corresponding mono- and binuclear complexes. Furthermore derivatives of gallic acid bearing long alkyl chains and UV sensitive units were prepared. The monolayers of the named compounds were investigated at the liquid/HOPG interface using scanning tunneling microscopy. The design of the ligand systems led to highly ordered lamellar 2D structures which are dependent on the alkyl chain length and on the metals contained. The assembly of monolayers

FIG. 1 STM image of an Extended Salen ligand and its corresponding Pd-complex

is driven by attractive van der Waals interactions of the alkyl chains and occurring H-bonds between

neighbouring molecules. Thereby the array of the pure ligands can easily be distinguished from the pattern of the corresponding metal complexes.

We are deeply grateful for the financial support by the SFB 569 of the Deutsche Forschungsgemeinschaft (DFG).

[1] R. Izumi, K. Hayama, K. Hayashi, K. Toko, Chem. Sens. 20 (2004)

[2] Valsesia, A.; Colpo, P.; Meziani, T.; Lisboa, P.; Lejeune, M.; Rossi, F. Langmuir 2006, 22,

[3] S. Flink, B. A. Boukamp, A. van den Berg, F. C. J. M. van Veggel, D. N. Reinhoudt, J. Am. Chem. Soc. 120, 19 (1998)

[4] M. T. Räisänen, F. Mögele, S. Feodorow, B. Rieger, U. Ziener, M. Leskelä, T. Repo, Eur. J. Inorg. Chem, accepted

Revealing the Electron-Phonon Coupling in a Ladder-Type π -Conjugated Polymer by Single-Molecule Spectroscopy

Richard Hildner¹, Ulrich Lemmer², Ullrich Scherf³, Marin van Heel⁴, and Jürgen Köhler¹

¹ Experimentalphysik IV and BIMF, Universität Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
² Lichttechnisches Institut, Universität Karlsruhe (TH), Kaiserstrasse 12, 76131 Karlsruhe, Germany

³ Fachbereich C – Mathematik und Naturwissenschaften and Institut für Polymertechnologie, Universität Wuppertal, Gauss-Strasse 20, 42097 Wuppertal, Germany

⁴ Department of Biological Sciences, Imperial College London, London SW7 2AY, United Kingdom

The efficiency of charge- and energy-transfer processes in π -conjugated polymers is strongly determined by their electron-phonon coupling strength. However, the inherent pronounced structural disorder as well as the strong spectral diffusion in this class of functional materials prevented a direct determination of this parameter as yet. Here we employ single-molecule spectroscopy in combination with pattern recognition techniques which allows us to retrieve the profile of the electronic spectrum and concomitantly the electron-phonon coupling strength in a methyl-substituted ladder-type poly(para-phenylene) (MeLPPP). From these data we find a weak electron-phonon coupling for this polymer at low temperatures consistent with the fast excitation energy transfer processes that have been observed for this polymer. Moreover, we find strong evidence that the low-frequency vibrational modes, which are coupled to the electronic transitions, stem from vibrations of the surrounding host matrix indicating an even weaker intra-chain electron-phonon coupling in MeLPPP.

Energy and Electron Transfer in Organic Donor-Acceptor Dyads Containing Perylenebisimide Studied by Time-Resolved Spectroscopy

<u>Ch. Hofmann</u>¹, P. Bauer², M. Thelakkat² and J. Köhler¹

¹ Department of Experimental Physics IV and BIMF, University of Bayreuth, D-95440 Bayreuth, Germany

² Applied Functional Polymers, University of Bayreuth, D-95440 Bayreuth, Germany

We investigated energy and electron transfer processes in organic donor-acceptor dyads by time-resolved fluorescence spectroscopy. Fluorescence lifetimes were determined using a frequency-doubled pulsed Ti:Sa laser system for excitation and a streak camera system for detection, allowing a temporal resolution of up to 2-3 ps. All lifetimes were measured in dilute solution.

In the first type of dyad, perylenebisimide (PBI) is covalently linked to a tetraphenylbenzidine (TPD) unit by an alkyl spacer. TPD acts as an energy transfer donor, PBI as an acceptor. Fluorescence lifetimes of both TPD and PBI have been determined for three different types of spacer and as a function of the solvent. We found that changing the spacer length had a significant influence on

Fig.1: Bottom left: Streak camera image of a TPD-PBI dyad (IRF = instrument response function) Bottom right: Fluorescence decay curves of TPD and PBI. Top: Fluorescence spectra of the dyad at times t1 and t2

the TPD lifetime and on energy transfer efficiency. The PBI lifetimes in all three TPD-PBI dyads were considerably shorter than those measured for pure PBI [1] and varied significantly upon changing the chemical composition of the spacer. We could also influence the PBI lifetimes noticeably by using different solvents. Specific solvent interactions seem to play an important role here, since the lifetime variations could not be attributed to changes in solvent polarity only. The effects described above seem to hint at an electron transfer process between TPD and PBI.

In a second type of dyad, PBI units are covalently linked to fullerenes. Here, PBI acts as an energy transfer donor. The PBI fluorescence lifetime is very strongly quenched in this kind of dyad due to energy and electron transfer to the fullerene.

[1] Ch. Scharf, K. Peter, P. Bauer, Ch. Jung, M. Thelakkat, and J. Köhler, Chem. Phys. 328, 403 (2006).

Optothermal DNA-Melting in Gold Nanoparticles Aggregates

<u>Calin Hrelescu</u>¹, Joachim Stehr¹, Ralph A. Sperling^{2,4}, Gunnar Raschke¹, Michael Wunderlich³, Alfons Nichtl³, Dieter Heindl³, Konrad Kürzinger³, Wolfgang J. Parak^{2,4}, Thomas A. Klar¹, and Jochen Feldmann¹

¹ Photonics and Optoelectronics Group, Physics Department and CeNS, Ludwig-Maximilians-Universität München, Amalienstr. 54, 80799 Munich, Germany.

² CeNS, Ludwig-Maximilians-Universität München, Amalienstr 54, 80799 Munich, Germany

³ Roche Diagnostics GmbH, Nonnenwald 2, 82372 Penzberg, Germany.

⁴ Present address: Fachbereich Physik, Philipps Universität Marburg, Renthof 7, 35037 Marburg, Germany.

Abstract not available.

Towards a Biological Sensor

M. Huth, B. Nickel

Department für Physik, Ludwig-Maximilians-Universität, Germany

In order to measure electronic properties of biological systems, the sensing area has to be adjacent to a sample surface to enable a proper coupling. Here, we investigate the possibility to use organic field effect transistors as a biological sensor. Currently the most controlled way to fabricate such devices is molecular beam deposition of crystalline thin films of Pentacene. The first major obstacle is the operation of a Pentacene thin film transistor (TFT) under water. Therefore the device has to be sealed with an ultra thin capping layer without losing its functionality. First capping experiments and device characteristics are presented. This work is part of an EU-initiative (Biodot).

All-dry Negative Tone Photoresists based on Coumarin Derivatives

Frauke Pfeiffer, Tristan Kolb, Christian Neuber, and Hans-Werner Schmidt

Department of Macromolecular Chemistry I, University of Bayreuth, Universitätsstr. 30, D-95440 Bayreuth, Germany.

In our days photoresists are used for fabrication of nanoscale patterns. They are usually prepared by spincoating a film from solution and after several steps including irradiation a pattern is realized by using an aqueous or organic developer [1]. An unusual way for preparation of thin photopolymerizable films is physical vapor deposition. In comparison to spincoating this method has the advantage of less impurities and the ability to create uniform films in nanometer thickness range [2]. In addition with this method poorly soluble substances are applicable for thin film preparation. Furthermore, combinatorial approaches can be easily applied [3]. While developing the normal liquid developers can have an impact on the structures due to percolation. To avoid this development can take advantage of the evaporation temperature increase due to the dimerization or polymerization of monomers. Therefor the residual monomer is removed via heating under high vacuum.

In this poster we present an all-dry approach for negative tone photoresists. Since we are using for the first time synthesized coumarin derivatives, there is no photoinitiator necessary. When exposed to UV light (300 – 400 nm), the coumarin group forms, even in the solid state, a cyclobutane ring with a second coumarin group and thus a dimer (see Fig. 1).

In UV spectra, this reaction can be easily followed by the two decreasing and finally vanishing characteristic peaks at wavelengths of 285 nm and 314 nm caused by the disappearance of the double bond.

We synthesized mono-, bi- and trifunctional coumarin derivatives for investigations. These were evaporated onto a primed silica wafer, patterned using a mask and UV light, and developed by heating under high vacuum to

evaporate the unexposed non-polymerized molecule. The coumarine derivates need for patterning in solid state a very high exposure time. In addition the developed features showed residues of, in the development step recristallized, monomer.

To solve these issues, we synthesized a sterical hindered monofunctional coumarin derivate **1**. This was coevaporated with the sensitizer Michler's ethyl keton **2**. Due to this the optained films needed a significant lowered exposure time.

Fig. 2 shows that the coumarin derivate **1** is vapor depositable and patternable without the use of any solvents. Thus this method has a high potential for all-dry negative photoresist systems.

Acknowledgement: We wish to thank the Deutsche Forschungsgemeinschaft, SFB 481, project A6 for financial support of this research.

10.0 5.0 2524 13 14

Fig. 2 Reflection microscope image of a developed coumarin/sensitizer resin.

[1] Microlithography – From Computer Aided Design (CAD) to Patterned Substrate, Cornell NanoScale Science & Technology Facility, 2002, Cornell University, Ithaca, New York, USA.

[4].

[2] M. Sato, M. Iijima, Y. Takahashi, J. Photopolym. Sci. Technol. 8, 1, 137-140 (1995).

[3] M. Thelakkat, C. Schmitz, C. Neuber, H.-W. Schmidt, Macromol. Rapid Commun. 25, 204-223 (2004).

[4] K. Vishnumurthy, T.N.G. Row, K. Venkatesan, Mol. Supramol. Photochem. 7, 427-460 (2001).

Transfection Statistics from EGFP-Fluorescence Data

Jan-Timm Kuhr, Joachim Rädler, and Erwin Frey

Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany

Transfection of genetic material to cells by means of natural or artificial viruses is at the focus of modern gene therapy. The appropriate dose of medication is of vital interest: in opposition to direct medication with a vast number of drug molecules, one here tries to influence the metabolism in a top-down approach by inserting small numbers of genes, from which expression is initiated.

Since small numbers are involved, fluctuations gain importance, influencing the efficiency of medication. Here we present theoretical analysis what kind of protein distributions are to be expected and how conclusions can be drawn on plasmid number distributions.

If protein degradation is much slower than mRNA kinetics and the expression factor is large, the protein distribution shows multiple peaks, reflecting integer gene copy numbers. Experiments suggest that copy numbers are often very small. Successful expression initiations can be regarded as independent events, hence giving rise to a Poisson distribution of expressing plasmids. This distribution can be determined and so can the overall gene expression factor.

Morphological Control in Organic Electronic Devices via Block Copolymer Self-Assembly

M. Sommer, S. Hüttner, S. Wunder, R. Lohwasser and Mukundan Thelakkat

Applied Functional Polymers, University of Bayreuth, 95440 Bayreuth, Germany

Morphology plays a crucial role in organic semiconducting devices. In organic solar cells, for example, one pivotal parameter is the creation of a large donor-acceptor interface for efficient charge separation while providing charge transport pathways to the respective electrodes at the same time. Here, we present the

Fig. 1 Dimerization of two coumarin groups by photocyclization

MCI Uni Boyreuth SFB 481 A6

synthesis [1] and application of novel donoracceptor diblock copolymers that allow tuning of nanostructures to fulfil the requirements mentioned above. The morphology of these molecules is investigated by transmission (TEM) and scanning electron microscopy (SEM). Depending on the block lengths, these block copolymers self-assemble into elongated electron-conducting worm-like or lamellar nanostructures embedded in a hole-conducting matrix. Single layer polymer solar cells with only the block copolymer as active material reveal a very strong morphological dependence on the device performance [2].

Furthermore, we will present a novel electronconducting block copolymer that self-assembles into a perfect cylindrical morphology as evidenced by SEM and TEM. Organic field effect transistors with this block copolymer exhibit the same charge carrier mobility compared to a device made of the electronconducting homopolymer. An explanation for

Fig. 1 Scanning electron micrograph of a thin film organic field effect transistor made of the novel electron-conducting block copolymer. 15 nm thin electron-conducting cylinders are observed as bright domains.

this exciting result is given by the morphological characterization of the OFET device. There, lying cylinders with a statistical orientation are observed which can serve as conduction pathways (Figure 1).

[1] M. Sommer, M. Thelakkat, Eur. Phys. J. Appl. Phys., 36, 245 (2006)

[2] M. Sommer, S. M. Lindner, M. Thelakkat, Adv. Funct. Mater., 17, 1493 (2007).

Nanocrystal-Encoded Microbeads for Diagnostics of Autoimmune Diseases

<u>S. Mayilo¹</u>, A.S. Susha¹, A. Bek¹, J. Feldmann¹, A.L. Rogach¹, A. Sukhanova², B. Reveil², B. Donvito², J.H.M. Cohen² and I. Nabiev²

¹ Department of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80799 Munich, Germany

² EA No. 3798 Détection et Approches Thérapeutiques Nanotechnologiques dans les Mécanismes Biologiques de Défense, Université de Reims Champagne-Ardenne, 51100 Reims, France

Early discovery of small amounts of autoantigens is essential for treatment of autoimmune diseases. A lot of effort is currently invested in development of fast and standardized detection schemes. In our work [1] we followed the fluorescence labelling approach, which offers advantages of rapidity, objectivity and potential for automation.

Polymer microbeads were optically encoded with fluorescent CdSe/ZnS nanocrystals and used for a systemic sclerosis flow cytometry immunoassay. The microbeads were prepared using electrostatic layerby-layer deposition of polymers in combination with infiltration of nanocrystals. Surface of the beads was covered with fragments of human DNA topoisomerase I (topol). Anti-Scl-70 (antitopoisomerase I) antibody, systemic sclerosis marker, bound to the surface of topol covered the microbeads. A dye labelled secondary antibody to anti-Scl-70 was used as anti-Scl-70 reporter. Flow cytometry data plots allow to distinguish between the samples with and without the analyte. The achieved sensitivity was less than 1 pmol of autoantibodies. Results of confocal microscopy and time-resolved FRET measurements support the formation of topoisomerase I - antiantitopoisomerase I immunocomplex. The presented immunoassay is the first application of nanocrystal encoded microbeads in proteomics.

[1] A. Sukhanova, A.S. Susha, A. Bek, S. Mayilo, A.L. Rogach, J. Feldmann, B. Reveil, B. Donvito, J.H.M. Cohen, I. Nabiev, Nanocrystal-encoded fluorescent microbeads for proteomics: antibody profiling and diagnostics of autoimmune diseases, Nano Letters 7, 2322 (2007).

Nanopatterned Surfaces by Molecular Self Assembly - a STM Study

Florian Mögele¹, Paul Heinz^{1,2}, and Bernhard Rieger²

¹ Institute of Material Science & Catalysis, University of Ulm, Albert-Einstein-Allee 11, Ulm, Germany ² WACKER-Chair of Macromolecular Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching, Germany

In the last decades top down engineering via lithographic methods led to high performance functional devices. But it is predicted that the now used common methods will reach their limits at structures below 20 nm. Contrary self assembly is a powerful method to obtain even smaller defined functional structures and has found use in miscellaneous fields such as chemical sensors [1], biotechnology [2], or catalysis and electrochemistry [3]. Self assembled monolayers of metal organic compounds - especially imine bridged complexes - are very interesting because of their catalytical - and in the case of compounds bearing two or more metals - of their paramagnetic properties.

Here we describe the synthesis of a self organizing ligand systems based on 2,4dihyroxybenzaldehyde [4] and 2,4dihydroxyacetophenon as well as the corresponding mono- and binuclear complexes. Furthermore derivatives of gallic acid bearing long alkyl chains and UV sensitive units were prepared. The monolayers of the named compounds were investigated at the liquid/HOPG interface using scanning tunneling microscopy. The design of the ligand systems led to highly ordered lamellar 2D structures which are dependent on the alkyl chain length and on the metals contained. The assembly of monolayers

FIG. 1 STM image of an Extended Salen ligand and its corresponding Pd-complex

is driven by attractive van der Waals interactions of the alkyl chains and occurring H-bonds between neighbouring molecules. Thereby the array of the pure ligands can easily be distinguished from the pattern of the corresponding metal complexes.

We are deeply grateful for the financial support by the SFB 569 of the Deutsche Forschungsgemeinschaft (DFG).

[1] R. Izumi, K. Hayama, K. Hayashi, K. Toko, Chem. Sens. 20 (2004)

[2] Valsesia, A.; Colpo, P.; Meziani, T.; Lisboa, P.; Lejeune, M.; Rossi, F. Langmuir 2006, 22,

[3] S. Flink, B. A. Boukamp, A. van den Berg, F. C. J. M. van Veggel, D. N. Reinhoudt, J. Am. Chem. Soc. 120, 19 (1998)

[4] M. T. Räisänen, F. Mögele, S. Feodorow, B. Rieger, U. Ziener, M. Leskelä, T. Repo, Eur. J. Inorg. Chem, accepted

Sequence-dependent Fluorescence of DNA-hosted Ag Nanoclusters

Beth Gwinn, <u>Patrick O'Neill</u>¹, Anthony Guerrero¹, and Deborah Fygenson^{1,2}

¹ Physics Department, University of California Santa Barbara, Santa Barbara, California, USA

² Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, California, USA

We study how the fluorescence of DNA-bound silver nanoclusters depends on the DNA strands that host the Ag atoms. Comparison of the visible fluorescence produced by Ag bound to single-stranded DNA and to double-stranded DNA shows that Watson-Crick base pairing suppresses formation of optically active Ag-DNA species. For single-stranded DNA, the wavelengths of the primary fluorescence peaks are highly reproducible and sensitive to the DNA sequence. Immobilization by drying enables the imaging of single emitters, as evidenced by the observation of dipolar emission patterns and fluorescence intermittency. The sensitivity of the Ag-DNA fluorophores to the DNA sequence and the straightforward detection of single emitters hold promise for future applications in nanoscale DNA-based devices. We acknowledge support from a UCSB Academic Senate seed grand and from NSF-CCF-622257. P. O'Neill acknowledges support as an NSF GK-12 Fellow (NSF-DGE 0440576). A. Guerrero acknowledges undergraduate research support from the CNSI.

Electret Additives for Isotactic Polypropylene

Cosima v. Salis-Soglio and Hans-Werner Schmidt

Makromolekulare Chemie I, Universität Bayreuth, 95440 Bayreuth, Germany

In order to improve the charge storage properties of isotactic polypropylene (i-PP) several trisamides with different substituents and varying cores have been incorporated. When added in appropriate concentrations, these additives act as charge traps by the formation of isolated nano-aggregates and thus inhibit charge drift and neutralization [1]. This work focuses on the establishment of structure – property relations, as well as on the concentration dependence.

The additives have been incorporated into i-PP by extrusion, and 80 µm thick films were made via compression molding of injection molded specimens. The films were charged using a point-to-plate corona setup with a grid for limitation of the surface potential. The surface potential of the samples was measured with an electrostatic voltmeter. The measurements were performed directly after charging at room temperature to get the initial value for the surface potential and after annealing at 90 °C for cumulative periods of 30, 90, 180, 360, 540, and 1440 minutes resulting in a surface potential decay curve. The high annealing temperature is used to simulate long-term measurements at room temperature.

Exemplarily, the surface potential decay curves of compound 1a is shown in five different concentrations in comparison to a reference compound 2, that is not able to build intermolecular hydrogen bonds, and in comparison to neat i-PP (Fig. 1). The optimal concentration of 1a in i-PP is 0.013 wt%, whereby the charge retention is about 50 Volt higher than that of the unadditivated i-PP. The presence of compound 2 makes the surface potential drop down clearly.

Fig. 1 Surface potential decay curves of benzene-1,3,5-tricarboxylic acid-(N -cyclohexyl)-trisamide (1a) in different concentrations, benzene-1,3,5-tricarboxylic acid-(N,N-dicyclohexyl)-trisamide (2), and neat i-PP.

This work was supported by the DFG (Projekt Schm 703/2-2)

Thanks to P. M. Kristiansen, Ciba Specialty Chemicals, CH-4002 Basel

[1] N. Mohmeyer, N. Behrendt, X. Zhang, P. Smith, V. Altstädt, G. M. Sessler, and H.-W. Schmidt, Polymer 48 (2007), 1612-1619

Fluorene Based Reactive Mesogens for Photopatterning

Esther Scheler, Irene Bauer, Peter Strohriegl

Macromolecular Chemistry 1, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany

Semiconducting organic materials have gained interest in the last years due to their applications in displays, electronics or sensors. Especially organic light-emitting diodes (OLEDs) are currently emerging as promising technology for flat panel displays and large area lighting [1,2]. In view of the mentioned applications patterning techniques for the production of pixelated devices are of particular interest. Conventional photolithography techniques optimized for inorganic materials are difficult to apply to organic materials. It was shown that classic photoresist techniques can only be transferred to structure organic compounds with major modifications, e.g. as lift-off techniques [3], which limits their applicability in OLED manufacturing.

Thus an attractive approach is the direct photochemical crosslinking of the semiconducting material itself, for example by the introduction of photocrosslinkable moieties [4,5]. By light induced crosslinking the material becomes insoluble and can simultaneously be patterned, comparable to a negative photoresist.

Here we report the synthesis, characterisation and photocrosslinking of fluorene based reactive mesogens. Polyfluorenes are well known emitter materials for organic light emitting devices due to their strong blue fluorescence, high quantum yields and easy handling.

Compounds bearing different contents of crosslinkable sites were synthesised and subsequently the photopolymerisation was examined. Under optimized conditions μ m-sized patterns were obtained (see Fig.1).

Fig. 1 Fluorescent microstructures (observed under a fluorescence microscope) of the depicted oligofluorene (1 wt% photoinitiator, irradiation with UV light, development in THF).

Financial support by the German Science Foundation (SFB 481) and the Bavarian Elite Study Programme is gratefully acknowledged.

[1] S. R. Forrest, Nature, 428, 911 (2004).

[2] A. Misra, P. Kumar, M. N. Kumalasanan, S. Chandra, Semicond. Sci. Technol., 21, R 35 (2006).

[3] J. Huang, R. Xia, Y. Kim, X. Wang, J. Dane, O. Hofmann, A. Mosley, A. J. de Mello, J. C. de Mello, D. D. Bradley, J. Mater. Chem., 17, 1043 (2007).

[4] C. D. Müller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wiederhirn, P. Rudati, H. Frohne, O. Nyken, H. Becker, K. Meerholz, Nature, 421, 829 (2003).

[5] M. C. Gather, A. Köhnen, A. Falcou, H. Becker, K. Meerholz, Adv. Func. Mater., 17, 191 (2007).

The mechanism of Gene Regulation Revealed by SpFRET

Peter Schluesche¹, Gertraud Stelzer², Elisa Piaia², Christoph Braeuchle¹, Michael Meisterernst² and Don C. Lamb^{1,3}

¹ Department for Physical Chemistry and Center for NanoScience, Ludwig-Maximilians-University, Butenandtstr. 11, 81377 München ² GSF-National Research Center for Environment and Health, Department of Gene Expression,

Marchioninistr. 25, 81377 München

³ Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA

Gene expression is an essential process in life and starts with the transcription of DNA into messenger RNA. The first step in the initiation of DNA transcription is the binding of the TATA-Box Binding Protein (TBP) to the gene promoter site on the DNA. The TBP recruits other transcription factors necessary for transcription and is a primary target for gene regulation. The transcription can be either enhanced or inhibited by regulatory proteins, such as Negative Cofactor 2 (NC2). NC2 forms a ring complex with the DNA bound TBP and represses gene expression in vitro [1,2]. Recent results of biochemical experiments suggest that the TBP becomes mobile along the DNA upon the binding of NC2. Thus, inhibition by NC2 could be explained by the dynamic behavior of TBP rather than by steric hindrances as currently thought.

To test this hypothesis, we have performed fluorescence resonance energy transfer (FRET) experiments on single TBP-NC2 complexes bound to DNA using Total Internal Reflection Fluorescence Microscopy with dual color detection. TBP was labeled specifically with a FRET-donor molecule and a 70 bp dsDNA containing a TATA sequence in the middle of the strand was labeled with a FRET-acceptor. The DNA was immobilized on the surface of the sample chamber. Before addition of NC2, the TBP-DNA complexes displayed a steady FRET signal. Upon addition of NC2, fluctuations in the FRET efficiency of individual complexes were observed. The variations in FRET occur from changes in the conformation of the DNA as well as movement of the TBP-NC2 complex along the DNA and have been observed in experiments using several different promoters.

[1] A. Goppelt, G. Stelzer, F. Lottspeich, M. Meisterernst, EMBO J. 15, 3105 (1996). [2] K. Kamada, F. Shu, H. Chen, S. Malik, G. Stelzer, R. G. Roeder, M. Meisterernst, S. K. Burley, Cell 106, 71 (2001).

Coagulation Kinetics of Spherical Polyelectrolyte Brushes in Presence of **Multivalent Counterions**

Christian Schneider and Matthias Ballauff

Universität Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany

In this work, we studied the coagulation kinetics of a monodisperse colloidal spherical polyelectrolyte brush (SPB) in the presence of multivalent Lanthanium(III) counter ions. The particles used here consist of a polystyrene core of 115 nm radius onto which linear poly(styrene sulfonate) (PSS) chains are chemically grafted via a photo-emulsion polymerisation. This procedure led to a dense brush of PSS chains with a contour length L_c of 48 nm. Determination of coagulation kinetics was performed by time-resolved simultaneous static and dynamic light scattering in the early stage of coagulation as described by Holthoff et al. [1]. Time-resolved simultaneous static and dynamic light scattering permitted the determination of the absolute coagulation rate from the change of light scattering intensity as well as from the increase of the hydrodynamic radius without knowledge of light scattering form factors of the aggregates. The fast coagulation rate constant of the SPB in Lanthanium(III)chloride solution was found to be $3.9 \pm 0.2 \cdot 10^{-18}$ m³/s. A stability curve was measured using different Lanthanium(III)chloride concentrations in the range of 0,2 mM to 0,15 M. We proposed a new theoretical model of the inter particle interactions of the SPB in presence of multivalent counter ions. This model describes the overall interaction pair potential assuming a strong attractive interaction upon direct contact of the particles and an electrostatic repulsive potential at larger distances. By comparing the theoretical model with the experimental data, we concluded a linear decrease of the surface potential of the SPB with increasing Lanthanium(III)chloride concentration.

[1] H. Holthoff, S. U. Egelhaaf, M. Borkovec, P. Schurtenberger and H. Stricher, Langmuir 12, 5541, (1996).

Imaging SNARE Mediated Membrane Fusion Events with Single Vesicle Resolution

Markus Schöffel^{1,2}, Erdem Karatekin¹, and Jean-Pierre Henry¹

 ¹ Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, UPR 1929, Université Paris 7 Denis Diderot, 13, Rue Pierre et Marie Curie, 75005 Paris, France
² Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany

SNARE (soluble N-ethylmaleimide-sensitive-factor attachment protein receptor) proteins seem to mediate intracellular membrane fusion in all secretory pathways in eukaryotic cells [1]. According to the SNARE hypothesis [2], each type of transport vesicle has a distinct v-SNARE that pairs up with a unique cognate t-SNARE at the appropriate target membrane [3]. Here we present a fluorescence assay with single vesicle resolution for the quantitative study of docking, fusion and hemifusion events. Planar lipid bilayers containing binary t-SNAREs (syntaxin-1A associated with SNAP-25) were incubated with proteoliposomes reconstituted with v-SNAREs (VAMP-2) [4].

We found that variation of the receptor surface density from 0-5,000 t-SNAREs/µm² yielded densities of adsorbed vesicles ranging from 0.1-0.4 v-SNARE vesicles/µm² and that docking is extremely sensitive to surface impurities. Impurity effects result in massive docking and overcome the can receptor concentration dependency. Membrane fusion (see Fig. 1) took place at fusion rates of 2–4 $\cdot 10^{-4}~s^{-1}~\mu m^{-2}$ on surfaces containing t-SNARE receptors in low concentrations (~60 t-SNAREs/µm²). High receptor concentrations (~ 4,000 t-SNAREs/µm²) resulted in a complete suppression of fusion. The addition of 100 µM Ca2+ did not increase the fusion rate. We observed fusion 0.11–1.1 s after docking of the vesicles depending on the vesicle and surface receptor concentration. Hemifusion is less frequent than complete fusion and occurred generally after 0.69 s. Vesicle fusion is immediately followed by outward radial diffusion of fluorescent lipids with a diffusion coefficient of $D = 0.3 \ \mu m^2 \ s^{-1}$.

Fig. 1 Detection of fusion events by fluorescence microscopy. A) A vesicle docked onto the bilayer is seen as a sharp spot of fluorescence intensity. B) The onset of fusion is determined as an increase in the fluorescent area and the total fluorescence intensity. C,D) Fusion is accompanied by a radially extending cloud of fluorescence intensity. E,F) After several frames, the fluorescence intensity begins to disappear due to photobleaching of the diffusing fluorophores.

The method we developed should allow for further investigations of the interesting and unexpected findings in order to build a more comprehensive picture of SNARE mediated membrane fusion.

[1] Y. A. Chen, and R. H. Scheller, Nat Rev Mol Cell Biol 2, 98 (2001)

[2] R. Jahn, and R. H. Scheller, Nat Rev Mol Cell Biol 7, 631 (2006)

[3] R. B. Sutton, D. Fasshauer, R. Jahn, and A. T. Brunger, Nature 395, 347 (1998)

[4] T. Weber, B. V. Zemelman, J. A. McNew, B. Westermann, M. Gmachl, F. Parlati, T. H. Söllner, and J. E. Rothman, Cell **92**, 759 (1998)

Pulling on Siloxane Molecules

<u>Peter Schwaderer</u>¹, Christoph Bräuchle¹, Enno Funk², Frank Achenbach², Johann Weis³, Jens Michaelis¹

¹Department Chemie und Biochemie CeNS, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, D-81377 München,

²Wacker Chemie AG, Johannes-Hess-Strasse 24, D-84489 Burghausen,

³Wacker Chemie AG, Consortium für elektrochemische Industrie, Zielstattstr. 20, D-81379 München

Increasing the mechanical stability of artificial polymer materials is an important task in materials science and for this a profound knowledge of the critical mechano-elastic properties of its constituents is vital. Here, we use AFM based single-molecule force spectroscopy measurements to characterize the rupture of a single silicon-oxygen bond in the backbone of polydimethylsiloxane as well as the force-extension behavior of this polymer. PDMS is not only an elastomer used in a large variety of products, but also an important model system for highly flexible polymers. In our experiments we probe the entire relevant force range from low forces dominated by entropy up to the rupture of the covalent Si-O bonds in the polymer backbone at high forces. The resulting rupture-force histograms are investigated with microscopic models of bond rupture under load and compared to density functional theory calculations to characterize the free energy landscape of the Si-O bond in the polymer backbone.

With this information it is possible to investigate the forces holding single polymers in complex networks. These polymer films consist of a rigid catalytical interlinked host polymer and a guest polymer which is held in the host polymer only by entanglement interactions. Additional filler particles can be introduced into the sample. These interact with both the host- and the guest polymer to change the anchoring of the guest polymer in the network.

Hydrogen Production by the Photo-cleavage of Water using TiO_2 Nanotube Arrays

<u>Karthik Shankar</u>, Gopal Mor, Oomman Varghese, Maggie Paulose, Haripriya Prakasam, Sorachon Yoriya, Thomas LaTempa, Nageh Abdel-Motalib and Craig Grimes

The Materials Research Institute, The Pennsylvania State

Vertically oriented Titania Nanotubes grown by anodization constitute a material architecture that can be precisely tuned to maximize light absorption, charge separation and charge collection. Thus, electronic carriers can be generated in this architecture by incident light in sufficient numbers and then efficiently used to perform work, rather than simply recombining. Titania Nanotubes offer a technology that can be beneficially used to degrade organic pollutants, split water to generate hydrogen, generate electricity from anchored dye molecules and decontaminate water (as a germicide) under the action of sunlight and/or ultraviolet radiation. Dye sensitized titania nanotube photoelectrodes have been shown to convert sunlight into electricity with an efficiency of 7 %. Under band-gap illumination, 30 µm long titania nanotube array based photoanodes performed water-splitting at an efficiency of 16.25 %.

In the last year, we have had a number of significant breakthroughs relating to our work on titania nanotube arrays. The first relates to the length of the nanotube arrays that can be grown by anodization. By using polar organic electrolytes such as formamide and ethylene glycol in the anodizing electrolyte, the maximum length of the nanotube arrays has been increased from 7 µm to 700 µm. Also, Ti-Fe-O nanotube arrays were successfully fabricated from cosputtered films of titanium and iron. Films with an iron content of 6.2 % exhibited the best photo-electrochemical properties. The Ti-Fe oxide nanotube array films were utilized in visible spectrum water photolysis, demonstrating a photocurrent of 2 mA/cm2 under AM 1.5 illumination with a sustained, time-energy normalized hydrogen evolution rate by water splitting of 7.1 mL/W•hr in a 1 M KOH solution.

From DNA-based Nanotubes to DNA-wrapped Carbon Nanotubes

T. L. Sobey, M. Otten, R. Jungmann, F. C. Simmel

Sektion Physik & Center for NanoScience, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München, Germany

DNA is proving to be a suitable and useful building block at the nanoscale. Its primary advantage is the programmability of structure and size. We are using DNA to assist in templating the arrangement of nano-sized objects such as fluorescent molecules, gold nanoparticles, and quantum dots. Here we present information about the design and experimental analysis of two different structures which will help us do this: DNA-based nanotubes and DNA-wrapped carbon nanotubes. These may prove suitable for use in biosensors and fundamental studies of collective phenomena.

Fig. 1 Atomic Force Microscope topographic images of: a) DNA-wrapped carbon nanotubes.b) DNA nanotube.

Compartmentalized Cylindrical Nanoparticles – Preparation, Solution Properties and Side-Specific Decoration with Inorganic Nanoparticles

Andreas Walther, Jiayin Yuan, Volker Abetz[‡] and Axel H. E. Müller

Makromolekulare Chemie II and Bayreuther Zentrum für Kolloide und Grenzflächen, Universität Bayreuth, P-95440 Bayreuth, Germany

[‡] Institut für Polymerforschung, GKSS-Forschungszentrum Geesthacht GmbH, D-21502 Geesthacht, Germany

Block copolymers offer a wide variety of well-defined microphase segregated structures in the bulk phase. This contribution reports on the preparation of cylindrical nanostructures with internal compartmentalization. The particles are prepared via crosslinking the polybutadiene segments of different morphologies of linear triblock copolymers and a miktoarm star polymer. Due to the unique morphologies found in the bulk state, different kinds of cylinders can be obtained. For instance, crosslinking a polystyrene-*block*-polybutadiene-*block*-poly(methyl methacrylate) triblock terpolymer, it is possible to obtain Janus cylinders. These cylinders posses a crosslinked core of polybutadiene and two hemicylinders as corona (PS, PMMA).

An even further subdivision of the corona of the cylinders can be achieved by changing the polymer architecture from linear to a heteroarm star polymer, bearing arms of polybutadiene, poly(2-vinylpyridine) and polystyrene. This leads to the formation of new morphologies, which cannot be obtained for linear terpolymers. The cylinders obtained on basis of the heteroarm star polymer template exhibit a corona with four segments, two PS and two P2VP. The segments oppose each other and the complete structure is centrosymmetric. Figure 1 shows the schematic synthesis and the side-selective decoration of the P2VP segments with gold nanoparticles.

Fig. 1. Schematic Synthesis of multicompartement cylinders on the basis of a heteroarm star polymer and its side-specific decoration with gold nanoparticles.

Results concerning size evolution, solution properties and aggregation tendency are presented. The results were obtained using complementary imaging and scattering techniques. In addition, side-specific decoration of the different compartments with inorganic nanoparticles will be presented, rendering these materials interesting for potential applications as novel nanodevices.

Frequency Modulation Torsional Resonance Mode AFM (FM-TR-AFM) for the In-plane Surface Properties Measurement

<u>Ayhan Yurtsever</u>¹, Alexander M. Gigler¹, C. Dietz², R. Magerle² and R. W. Stark¹

¹ CeNS, Ludwig-Maximilians-university, Munich, Germany

² Chemische Physik, Technische Universität Chemnitz, D-09107 Chemnitz, Germany

Torsional vibration of atomic force microscope (AFM) cantilevers can be used to measure elastic and friction properties on a nanoscale. The vibrations of the cantilever in the torsional mode are excited by two piezoelectric elements attached beneath the holder of the chip, in which two piezo actuators vibrate out-of-phase with respect to each other [1]. The torsion about the long axis of the cantilever promotes a small pendulum-like oscillation of the tip apex parallel to the sample surface with typical amplitudes of 0.2nm to 2.0nm. This pendulum-like oscillation parallel to the surface avoids the strong nonlinearity due to the vibro-impact dynamics of conventional methods such as tapping or non-contact mode.

In this work, we demonstrate frequency modulation (FM) for torsional resonance mode AFM. Both, frequency shift and energy dissipation are measured under ambient conditions. The frequency shift provides information on the conservative interaction, while the dissipation signal contains information on additional energy losses. To regulate the FM detection scheme, we used a Phase-Loop-Look controller/detector (PLL) from Nanosurf (Liestal, Switzerland). By monitoring the changes in the resonance frequency and the excitation amplitude required to keep the oscillation amplitude at a constant value, we were able to measure the frequency shift and dissipation caused by the tip-sample interaction. Frequency shift spacing curve tip-sample taken on homopolymers polystyrene (PS) reveals that the different chain length of the polymer surface shows different response to the conservative and the dissipative tip-sample interaction. The distance between the first contact between tip and surface and the transition from the interfacial laver to the bulky polymer corresponds very well to the radius of gyration of the PS homopolymers

Fig. 1 Schema of the feedback circuitry used for frequency modulation of torsional resonance imaging. The torsion signal is measured by the quadrant photodiode. The signal was preamplified and then fed into the FM-Controller. The frequency shift signal was used for feedback and the damping was detected as amplitude variation by the automatic gain control (AGC).

investigated here [2]. The frequency shift versus displacement curves can be used to differentiate the different polymer surface, from their molecular weight.

The demonstration the energy dissipation mapping by frequency modulated torsional resonance AFM under ambient conditions opens a wide field of new applications in tribology. Frictional properties can be addressed by dynamic AFM which have not been accessible by the NC-AFM in vertical direction to the sample surface so far.

L. Huang, and C. M. Su, Ultramicroscopy 100, 277 (2004)
A.yurtsever, A. M. Gigler, R. W. Stark, (unpublished)

For your notes:

Abraham Dr. Andruzzi Dr. Bar-Ziv Dr. Bernet Blüm Dr. Prof. Böker Da Como Dr. Di Luccio Dr. Prof. Fery Dr. Franosch Friedrichs Prof. Fygenson Gialer Dr. Prof. Grimes Hallermann Heinz Hennig Prof. Herminghaus Hildner Hofmann Hofmann Hrelescu Huth Prof. Jacobs Prof. Jeppesen Prof. Kobuke Prof. Köhler Kolb Prof. Kramer Dr. Kreger Dr. Krov Kuhr Lammel Liedel Lohwasser Mayilo Menzel Mögele Morgenroth Dr. Neuber O'Neill Orts Pretzl Prof. Rädler Ruben Dr. Prof. Rühe Prof. Russell Ryseck Salis-Soglio Schaller Scheler Schlüsche Prof. Schmidt Schmidt-Mende Dr. Schneider Schöffel Schötz Schüller Schwaderer Dr. Shankar Dr. Simmel Sobey Prof. Strohriegl Prof. Thelakkat Walther Wieberger Yurtsever

Frank Luisa Roy Andreas Marie-Christine Alexander Enrico Tiziana Andreas Thomas Eike Deborah Alexander M. Craig A. Markus Paul Martin Stephan Richard Dirk Patrick Christiane Calin Martin Karin Jan O. Yoshiaki Jürgen Tristan Ed Klaus Klaus Jan-Timm Andreas Clemens Ruth Sergiy Andreas Florian Evelyn Christian Patrick Guillermo Melanie Joachim Mario Jürgen Thomas P. Gerald Cosima Volker Esther Peter Hans-Werner Lukas Christian Markus Thomas Felix Peter Karthik Friedrich Tom Peter Mukundan Andreas Florian Ayhan

University of Bayreuth LMU Munich Weizmann Inst. of Science University of Bayreuth LMU Munich University of Bayreuth LMU Munich ENEA University of Bayreuth LMU Munich LMU Munich UCSB LMU Munich Penn State University LMU Munich University of Ulm LMU Munich MPI Göttingen University of Bayreuth University of Bayreuth University of Bayreuth LMU Munich LMU Munich University of Saarland U. of Southern Denmark Kyoto University University of Bayreuth University of Bayreuth UCSB University of Bayreuth University of Leipzig LMU Munich TU Munich University of Bayreuth University of Bayreuth LMU Munich University of Bayreuth University of Ulm LMU Munich University of Bayreuth UCSB TU Berlin University of Bayreuth LMU Munich Forschungsz. Karlsruhe U. of Freiburg - IMTEK U. of Massachusetts LMU Munich University of Bayreuth University of Bayreuth University of Bayreuth LMU Munich University of Bayreuth University of Cambridge University of Bayreuth University of Bayreuth LMU Munich LMU Munich LMU Munich Penn State University LMU Munich LMU Munich University of Bayreuth University of Bayreuth University of Bayreuth University of Bayreuth LMU Munich

frank.abraham@uni-bayreuth.de luisa.andruzzi@physik.uni-muenchen.de Roy.Bar-ziv@weizmann.ac.il andreas.bernet@uni-bayreuth.de bluem@cens.de alexander.boeker@uni-bayreuth.de Enrico.Dacomo@physik.uni-muenchen.de tiziana.diluccio@portici.enea.it andreas.fery@uni-bayreuth.de franosch@lmu.de eike.friedrichs@physik.uni-muenchen.de deborah@physics.ucsb.edu aialer@lmu.de cgrimes@engr.psu.edu markus.hallermann@gmail.com paul.heinz@uni-ulm.de martin.hennig@physik.lmu.de stephan.herminghaus@ds.mpg.de richard.hildner@uni-bayreuth.de dirk.hofmann@smz.info christiane.scharf@uni-bayreuth.de calin.hrelescu@physik.uni-muenchen.de m.huth@lmu.de k.jacobs@physik.uni-saarland.de joj@chem.sdu.dk kobuke@iae.kyoto-u.ac.jp Juergen.Koehler@uni-bayreuth.de Tristan.Kolb@web.de edkramer@mrl.ucsb.edu klaus.kreger@uni-bayreuth.de krov@hmi.de jan.kuhr@physik.uni-muenchen.de andreas.lammel@ch.tum.de Clemens.Liedel@gmx.de ruth.lohwasser@gmx.de sergiy.mayilo@physik.uni-muenchen.de andreas.menzel@uni-bayreuth.de florian.moegele@uni-ulm.de morgenroth@cens.de christian.neuber@uni-bayreuth.de patrick@physics.ucsb.edu guilleortsgil@hotmail.com melanie.pretzl@uni-bayreuth.de Joachim.Raedler@physik.uni-muenchen.de mario.ruben@int.fzk.de ruehe@imtek.uni-freiburg.de russell@mail.pse.umass.edu gerald.ryseck@physik.lmu.de cosima.salis-soglio@uni-bayreuth.de volker.schaller@uni-bayreuth.de esther.scheler@uni-bayreuth.de peter.schluesche@cup.uni-muenchen.de hans-werner.schmidt@uni-bayreuth.de ljs38@cam.ac.uk christian.schneider@uni-bayreuth.de markus.schoeffel@gmx.net schoetz@theorie.physik.uni-muenchen.de elix.schueller@physik.lmu.de Peter.Schwaderer@cup.uni-muenchen.de kzs105@psu.edu Friedrich.Simmel@physik.uni-muenchen.de thomas.sobey@physik.uni-muenchen.de peter.strohriegl@uni-bayreuth.de mukundan.thelakkat@uni-bayreuth.de andreas.walther@uni-bayreuth.de Florian.Wieberger@uni-bayreuth.de Ayhan.Yurtsever@lrz.uni-muenchen.de

Workshop "Macromolecular Systems for NanoScience - Chemistry, Physics and Engineering Aspects", Irsee September 6th-9th 2007

Organized by CeNS (Munich) and BIMF (Bayreuth) in the framework of the Elite Network of Bavaria via the IDK-"NanoBioTechnology" and the Study Program "Macromolecular Science"

	Thursday, 06.09.07	Friday, 07.09.07	Saturday, 08.09.07	Sunday, 09.09.07
07:30		Breakfast	Breakfast	Breakfast
09:00		Design of polymer-coated nanoparticles for positioning in block copolymers	Nondisruptive block copolymer-based nanolithographic processes	Complementary coordination of porphyrin as scaffold for biomimetic and optics materials
		Ed Kramer	Thomas Russel	Yoshiaki Kobuke
09:45		Surface-Confined Self-Assembly	Can an optical sensor for TNT related explosives be made?	Multifunctional donor-acceptor block copolymers for solar cell applications
10.20		Mario Ruben	Jan O. Jeppesen	
10:30		Break	Вгеак	Вгеак
11:00		morphology and electronic structure in conjugated polymers	Controlling complex fluids in microsystems	DNA-switchable supramolecular structures
		Enrico Da Como	Stephan Herminghaus	Fritz Simmel
11:45	Departure from Munich	Micromechanics of		CLOSING
	at 10:30	ultrathin polymeric membranes - from	Slow transport in	
	Arrival in Irsee at ~12:00	capsules to wrinkles		Departure at 12:15
		Andreas Fery	Thomas Franosch	
12:30	Lunch (Buffet)	Lunch (Duffet)	Lunch (Buffot)	14.00
14:15	OPENING			
14:30	DNA as a tool for Nanoscience	Synthesis and application of vertically oriented, highly ordered arrays of TiO ₂ nanotubes	Cell-free gene expression on a chip	
	Deborah Fygenson	Craig Grimes	Roy Bar-Ziv	
15:15	Wormlike and glassy wormlike chains	Short presentations of posters l	Revealing the interplay of forces: dewetting fluids, adsorbing proteins and sticking geckos	
	Klaus Kroy		Karin Jacobs	
16:00	Break	Break	Break	
16:30	Tailor-made surfaces for microsystems and nanotechnology	Short presentations of posters II	Nanostructures for Photovoltaics	
	Jürgen Rühe		Lukas Schmidt-Mende	
17:15	Tuning block copolymer morphologies with electric fields – from chain stretching to order-order-transitions <i>Alexander Böker</i>	Poster Session	Block Copolymer Blends for Holographic Data Storage <i>Hans-Werner Schmidt</i>	
18:00	Dinner (Buffet)			
19:30		Dinner (Buffet)	Conference Dinner (Menue)	