HOMECONTACTSITE MAPIMPRINT
CeNS Center for NanoScience LMU Ludwig-Maximilians-Universität München
CeNS HomepageLMU Homepage

Wednesday, 27 August, 2014

Redox shuttle mechanism enhances photocatalytic ​H2 generation on ​Ni-decorated ​CdS nanorods

T. Simon, N. Bouchonville, M. Berr, A. Vaneski, A. Adrović, D. Volbers, R. Wyrwich, M. Döblinger, A. Susha, A. Rogach, F. Jäckel, J. Stolarczyk, and J. Feldmann -
Nature Materials, doi:10.1038/nmat4049, published online: 3 August 2014

Photocatalytic conversion of solar energy to fuels, such as ​hydrogen, is attracting enormous interest, driven by the promise of addressing both energy supply and storage. Colloidal semiconductor nanocrystals have been at the forefront of these efforts owing to their favourable and tunable optical and electronic properties as well as advances in their synthesis. The efficiency of the photocatalysts is often limited by the slow transfer and subsequent reactions of the photoexcited holes and the ensuing high charge recombination rates. Here we propose that employing a hydroxyl anion/radical redox couple to efficiently relay the hole from the semiconductor to the scavenger leads to a marked increase in the ​H2 generation rate without using expensive noble metal co-catalysts. The apparent quantum yield and the formation rate under 447 nm laser illumination exceeded 53% and 63 mmol g−1 h−1, respectively. The fast hole transfer confers long-term photostability on the system and opens new pathways to improve the oxidation side of full water splitting.

 

Article on journal's website